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For clouds at z ~ 1 ! 3 



Fundamental limitations towards end-to-end understanding of 
star formation as a function of environment 

1. Single snapshots ! impossible to know simultaneously 
know initial conditions and eventual fate of a region 

2. Different environments ! can not causally connect different 
regions 

3. Only place can resolve stars = MW ! Environment not 
representative of that in which most stars in the Universe 
formed 
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After pericentre passage with Sgr A*: 
1. Gas density increases 

2. Star formation activity increases 

Star formation triggered by 
close passage with bottom 
of gravitational potential? 

Kruijssen, Dale  
& Longmore 

Longmore et al, 2013b, MNRAS, 433, 15 



SPH simulations of gas 
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    ! gas will always form stars 
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passage in controlled setting 
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properties 
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Points + error bars = data,      
lines = projected trajectory  



Hydro simulations of gas 
clouds on best-fit orbit 

-  vertical compression at pericentre 

-  dimensions in plane remain similar 

-  cloud fragments  
   ! multiple vel. comp. along L.O.S. 

-  undergoes global collapse 

-  leads to  massive, single clump @ 
Sgr B2 

-  Brick position  
    !  curved, bow-like morphology 
    ! counter-rotating gas motion due 
        to shear 



Star Formation “Time Machines” 

We have a causally-linked system of gas clouds with 
properties indistinguishable from high-z clouds with 

known time since star formation was instigated  
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After pericentre passage with Sgr A*: 
1. Gas density increases 

2. Star formation activity increases 

ALMA Cycle 0 data 
3mm continuum map 

PI Jill Rathborne 

Individual star-forming 
cores in gas 

indistinguishable from 
that in high-z galaxies!!!  

Johnston et al., 2014, A&A, 568, 56 
Kauffmann et al., 2013, ApJ, 765, 35 



ALMA Cycle 0  

Column density PDF 



ALMA Cycle 0  

Deviation to high density 
in star-forming core 

Column density PDF 



ALMA Cycle 0  

Deviation to high density 
in star-forming core 

“Universal” density threshold of 
Lada et al, Andre et al 

Column density PDF 



ALMA Cycle 0  

Deviation to high density 
in star-forming core 

Column density PDF 

Nearly all the gas in 
the cloud is above 

the “universal” 
threshold  

“Universal” density threshold of 
Lada et al, Andre et al 



ALMA Cycle 0  

< 0.06% of the mass 
above the threshold is 

forming stars 
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ALMA Cycle 0  

Deviation to high density 
in star-forming core 

Density threshold matches that 
predicted by theory for gas at 4 

orders of magnitude higher 
pressure than in the disk 

Dispersion of PDF 
matches that 

predicted by theory 
for gas at 4 orders 

of magnitude higher 
pressure than in the 

disk 



“Universal” column density threshold 
for star  formation ruled out 

Environmentally-dependent density 
threshold for star formation matches 

theoretical predictions 



Star Formation “Time Machines” 

First test of SF theory in high-z-like 
environment 

Rule out “Universal” density threshold  

Rathborne, Longmore, Jackson, Kruijssen et 
al – arXiv:1409.0935 
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After pericentre passage with Sgr A*: 
1. Gas density increases 

2. Star formation activity increases 

Use this to 
answer 

fundamental 
open question in 
the formation of 
young massive 

clusters   



Centrally-condensed, compact stellar population 
forms 

Feedback > Gas Expulsion > 
Expansion due to diluted potential 

Stars and sub-clusters form throughout the spatial 
extent of the natal gas cloud 

Stars decouple from the gas > 
Merging of stellar condensations > 
Centrally-condensed stellar cluster 

i) 

ii) 
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After pericentre passage with Sgr A*: 
1. Gas density increases 

2. Star formation activity increases 

We have: 

4 likely YMC progenitor clouds 
1 Proto YMC (Sgr B2) 
1 YMC (Arches) 

All in the same environment  

How does their mass 
distribution vary with time? 

Arches Cluster 



Walker, Longmore et al. submission next week 
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Sagittarius B2 core 
stellar distribution  

Arches data from Espinoza et al. 2009 
Sagittarius B2 data from Gaume et al. 1995 

Gas, SFE = 30% 

Arches stellar 
distribution 

Gas and stars during 
formation LESS dense than 

final YMC distribution 
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Arches data from Espinoza et al. 2009 
Sagittarius B2 data from Gaume et al. 1995 

Gas is initially too dispersed 
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Feedback > Gas expulsion > 
Expansion due to diluted potential 
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ii) 

Stars and sub-clusters form throughout the spatial 
extent of the natal gas cloud 



Does this only apply at the Galactic centre? 
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Stars in YMCs do not 
form at their final stellar 

densities  



Looking to the future 
•  Directly follow CMF ! IMF 

•  Watch the mass assembly process of the most 
massive (>100Msun) stars 

•  See how the most massive and dense clusters in 
the Galaxy (e.g. Arches) assemble their mass 

•  Directly test predictions of different turbulent star 
formation theories 
– Can directly measure SFEff for observed MS, MA, α, β 

Spectacular laboratory for future SF studies! 



SMA Galactic Centre Legacy Survey 
PIs: Eric Keto, Cara Battersby 

•  500 hours of time with SMA to map the dense 
gas structure at 0.1pc resolution 

•  Sub-compact + compact + single-dish to 
recover all spatial scales 

•  SWARM correlator ! 8GHz bandwidth = 
many spectral lines! 

•  Large amount of data already taken    



Star Formation “Time Machines” 

First test of SF theory in high-z-like 
environment 

Rule out “Universal” density threshold  

Stars in YMCs do not 
form at their final stellar 

densities  
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How similar is the gas in the Milky Way to other star 
formation environments across cosmological timescales? 

•  Problems to overcome (many!) 
– Heterogeneous data sets 
– Different observational tracers 
–  Large range in spatial resolution 

•  Approach 
–  Identify properties that can be most robustly compared 

•  Limited by most distant sources (high-z galaxies) 
– R, ΔV, Mgas, Mstar 
– R, ΔV, Σgas, Σstar (normalise by spatial area) 
– Break sample in to four groups 

•  Disks of nearby spirals 
•  Centre of the MW 
•  Starburst systems 
•  High-z galaxies   

Plot everything 
against everything 
else and see if can 

find unique properties 
to separate gas in the 

groups 

Kruijssen & Longmore 2013, MNRAS, 435, 2598 
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