A sub-arcsecond study of the hot molecular core in G23.01-0.41

A.Sanna ${ }^{1}$ (asanna@mpifr-bonn.mpg.de), R.Cesaroni², L.Moscadelli², Q.Zhang ${ }^{3}$, K.M.Menten ${ }^{1}$, S.Molinari ${ }^{4}$, A.Caratti o Garatti ${ }^{1}$, and J.M. De Buizer ${ }^{5}$

(${ }^{1}$ MPIfR, Germany; ${ }^{2}$ INAF OA, Italy; ${ }^{3} \mathrm{CfA}$, USA; ${ }^{4}$ INAF-IFSI, Italy; ${ }^{5}$ SOFIA-USRA , USA)

Abstract

 and velocity field of gas close to the central YSO with that of the associated molecular outflow. likely to be concentrated in a single O9.5 ZAMS star, consistent with the bolometric luminosity derived from the SED of $4 \cdot 10^{4} L_{\circ}$ (Sanna et al. 2014, A\&A, 565, 34).

An Infrared view toward the HMC

RIGHT ASCENSION (J2000)
RIGHT ASCENSION (JZ000)

UPPER PANELS. Parsec-scale structure of the star forming region obtained with the PACS camera on board of the Hershel satellite at $160 \mu \mathrm{~m}$ and $70 \mu \mathrm{~m}$ (color log.-scale on top of each panel). The linear scale is drawn on the left side of panel a). The white dashed circle in panel b) marks the region inside which the SED associated with the HMC was measured (right). For each plot, the beam size of the Herschel images is shown on the bottom left corner. The SED of G23.01-0.41 was reconstructed with ancillary archival data as color-coded in the right panel, where dots and triangles indicate measurements and lower limits, respectively. The SED was fitted with the radiative transfer model developed by Robitaille et al. (2007, ApJS, 169, 328).

Analysis of the HMC velocity field

Integrated velocity maps

Panel c): SMA integrated maps of the $\mathrm{SiO}(5-4)$ line emission (blue \& red) superposed to the VLA-C $\mathrm{NH}_{3}(3,3)$ map (grayscale) obtained by Codella et al. (1997, A\&A, 325, 282). Integrated velocity ranges are reported on top of the panel. Contour levels start from 5σ by 3σ for the SiO map and from 3σ in steps of 1σ for the NH_{3} map. The NE-SW line in each panel shows the outflow direction as inferred from the ${ }^{12} \mathrm{CO}(2-1)$ and $\mathrm{SiO}(5-4)$ line emission. Synthesized beams are shown on the bottom of each panel.
Panel d): Maps of the $\mathrm{CH}_{3} \mathrm{OH}\left(15_{4}-16_{3}\right) \mathrm{E}$ line emission, the strongest observed in the SMA VEX configuration. Grey, blue, and red contours are, respectively, maps of emission at the systemic velocity ($\mathrm{V}_{\text {sys }}$), and in the blue- and red-shifted wings of the line (the velocity ranges are indicated in the upper right). Grey contours start at 3σ and increase in steps of 1σ, whereas the blue and red contours start at a 5σ level in steps of 2σ. Blue and red dots mark the positions of the blue- and redshifted methanol maser spots at 6.7 GHz detected by Sanna et al. (2010, A\&A, 517, A78).

P-V analysis

Panel e): p-v cut of the $\mathrm{CH}_{3} \mathrm{CN}\left(12_{3}-11_{3}\right)$ line along the major axis of the elongated HMC $\left(-32^{\circ}\right)$; east offsets are measured along this cut. Contours start at 90% of the peak
emission by 10% steps; colors are drawn according to the wedge on the right side. The dashed line represents the best linear fit to the emission.
Panel f): p-v distribution of the peaks of the $\mathrm{CH}_{3} \mathrm{CN}$ emission (black dots with error bars) at different velocities (only the $\mathrm{K}=0$ to 4 components have been used) along the major axis of the elongated HMC $\left(-32^{\circ}\right)$; east offsets are measured along this cut The vertical dashed lines mark the limits of the FWHM of the $\mathrm{CH}_{3} \mathrm{CN}\left(12_{\mathrm{K}}-11_{\mathrm{K}}\right)$ lines. The dotted pattern encompasses the region where emission is expected from a Keplerian disk rotating about a $19 \mathrm{M}_{\mathrm{o}}$ -

