Relation between dust and gas in the LMC and SMC: Probing dust evolution between ISM phases

Julia Roman-Duval

Space Telescope Science Institute

GESF2014 September 9, 2014

In collaboration with Karl Gordon, Margaret Meixner, and the HERITAGE Team

Evidence for dust evolution between ISM phases: UV Extinction Curves

Size and composition of dust grains change with environment

Evidence for dust evolution between ISM phases: Depletions

- Fraction of metals locked up in dust grains increases with increasing density
- This increases the abundance of dust and changes its composition in molecular clouds compared to the diffuse ISM

Outline

- Data and Method
- Dust-Atomic gas relation
 - Location of the H₁-H₂ transition
 - Gas-to-dust ratio in the diffuse atomic ISM
- Dust-total gas relation
 - Dust-gas slope in the dense ISM
 - Degeneracy with X_{co}
- Interpretation of dense dust-gas slope
 - Effects of coagulation and accretion

LMC Dust and Gas Surface Densities

 $\Sigma_{\rm dust}$ from Herschel HERITAGE maps at 100, 160, 250, 350, 500 μ m at 40" resolution (Gordon +2014)

 Σ (HI) from ATCA+Parkes at 1' resolution (Kim +2003)

I_{co} from MAGMA survey with MOPRA at 45" resolution (Wong+2011)

Final resolution: 1' or 15 pc

SMC Dust and Gas Surface Densities

 $\Sigma_{\rm dust}$ from Herschel HERITAGE maps at 100, 160, 250, 350, 500 μ m at 40" resolution (Gordon+2014)

 Σ (HI) from ATCA+Parkes at 1.5' I_{CO} from NANTEN survey 2.6' resolution (Stanimirovic+99) resolution (Mizuno+01) $_6$

Gas-to-dust ratio as a slope

$$GDR = n_{gas}/n_{dust} = d\Sigma_{gas}/d\Sigma_{dust}$$

- The GDR is the derivative/slope of the relation between dust and gas surface densities
- Also allows one to separate different phases by deriving slope in different surface density regimes

Dust – H I relation: LMC

Dust – H I relation: SMC

Dust-Total Gas Relation

Estimating H₂: X_{CO} factor

 X_{co} factor is an empirical conversion factor between CO mean integrated intensity (I_{CO}) and mean H_2 column density $N(H_2)$ in a given region

 X_{CO} depends on spatial resolution, and many physical parameters: Z, G_0 , τ , evolutionary and dynamical state of a GMC ...

 $X_{CO} = \frac{N(H_2)}{\overline{I}}$

- X_{CO} is not well theoretically or observationally constrained (H₂ is invisible!)
- We start with estimate from Bolatto+2013:

$$\frac{X_{CO}(Z)}{X_{CO}(MW)} = 0.67 \exp\left(\frac{0.4}{Z \sum_{GMC,100}}\right)$$
SMC: 5×MW (10²¹ cm⁻² K⁻¹ km⁻¹ s)
$$= 0.67 \exp\left(\frac{0.4}{Z \sum_{GMC,100}}\right)$$
LMC: 1×MW (2×10²⁰ cm⁻² K⁻¹ km⁻¹ s)

Dust-Total Gas Relation: SMC

with
$$X_{CO} = 5 \times X_{CO}(MW)$$

Dust-Total Gas Relation: SMC

with
$$X_{CO} = 20 \times X_{CO}(MW)$$
 ($\Sigma_{GMC,100} = 0.6$)

Dust-Total Gas Relation: LMC

with
$$X_{CO} = X_{CO}(MW)$$

Dust-Total Gas Relation: LMC

with
$$X_{CO} = 3.5 \times X_{CO}(MW) (\Sigma_{GMC,100} = 0.5)$$

- Physical processes that can change the dust-gas slope:
 - True dust abundance (gas-to-dust ratio) variations by accretion of gas-phase metals onto dust grains or other processes (e.g., dust grain clustering by turbulence...)
 - Coagulation, by increasing emissivity of coagulated big grains in molecular clouds, leading to overestimate of dust surface density since constant emissivity is assumed
 - Dark (probably molecular) gas: CO-dark H_2 in beam should be accounted for by use of higher than Galactic X_{CO}
 - CO saturation: CO saturation could lead to a decrease of dust-gas slope at highest surface density if constant X_{CO} is assumed
 - Although not expected at metallicity of LMC, SMC (Shetty+2011)
- PROBLEM: All of these effects are degenerate and lead to a decrease of observed dust-gas slope with increasing surface density!!!!

- Physical processes that can change the dust-gas slope:
 - True dust abundance (gas-to-dust ratio) variations by accretion of gas-phase metals onto dust grains or other processes (e.g., dust grain clustering by turbulence...)
 - Coagulation, by increasing emissivity of coagulated big grains in molecular clouds, leading to overestimate of dust surface density since constant emissivity is assumed
 - Dark (probably molecular) gas: CO-dark H₂ in beam should be accounted for by use of higher than Galactic X_{co}
 - CO saturation: CO saturation could lead to a decrease of dust-gas slope at highest surface density if constant X_{CO} is assumed
 - Although not expected at metallicity of LMC, SMC (Shetty+2011)
- PROBLEM: All of these effects are degenerate and lead to a decrease of observed dust-gas slope with increasing surface density !!!!

- Physical processes that can change the dust-gas slope:
 - True dust abundance (gas-to-dust ratio) variations by accretion of gas-phase metals onto dust grains or other processes (e.g., dust grain clustering by turbulence...)
 - Coagulation, by increasing emissivity of coagulated big grains in molecular clouds, leading to overestimate of dust surface density since constant emissivity is assumed
 - Dark (probably molecular) gas: CO-dark H_2 in beam should be accounted for by use of higher than Galactic X_{CO}
 - CO saturation: CO saturation could lead to a decrease of dust-gas slope at highest surface density if constant X_{CO} is assumed
 - Although not expected at metallicity of LMC, SMC (Shetty+2011)
- PROBLEM: All of these effects are degenerate and lead to a decrease of observed dust-gas slope with increasing surface density !!!!

- Physical processes that can change the dust-gas slope:
 - True dust abundance (gas-to-dust ratio) variations by accretion of gas-phase metals onto dust grains or other processes (e.g., dust grain clustering by turbulence...)
 - Coagulation, by increasing emissivity of coagulated big grains in molecular clouds, leading to overestimate of dust surface density since constant emissivity is assumed
 - Dark (probably molecular) gas: CO-dark H₂ in beam should be accounted for by use of higher than Galactic X_{co}
 - CO saturation: CO saturation could lead to a decrease of dust-gas slope at highest surface density if constant X_{CO} is assumed
 - Although not expected at metallicity of LMC, SMC (Shetty+2011)
- PROBLEM: All of these effects are degenerate and lead to a decrease of observed dust-gas slope with increasing surface density!!!!

Theoretical constraints on dust coagulation

Coagulation timescale:

$$t_{coag} = \frac{573 \ Myr}{n_{gas}} \frac{GDR}{150}$$
 Kohler+2012

t _{coag}	Diffuse (n~1 cm ⁻³)	Translucent (n~50 cm ⁻³)	Dense (n~1000 cm ⁻³)
LMC	1.5 Gyr	30 Myr	1.5 Myr
SMC	5 Gyr	100 Myr	5 Myr

- Unlikely coagulation occurs in SMC on GMC scales, except in very dense cores (n>5000 cm⁻³)
- Coagulation may well affect the dust surface density estimate on GMC scales in the LMC

Effects of dust coagulation

Coagulation can increase the FIR emissivity of dust grains by a factor ~ 2 or more

Relation Σ_{dust} - A_{V}

Theoretical constraints on accretion

Accretion timescale for MgSiO₃ (limiting element = Mg)

t _{coag}	Diffuse (n~1 cm ⁻³)	Translucent (n~50 cm ⁻³)	Dense (n~1000 cm ⁻³)
LMC	3 Gyr	60 Myr	3 Myr
SMC	10 Gyr	200 Myr	9 Myr

- Unlikely accretion occurs in SMC on GMC scales, except in very dense cores (n>5000 cm⁻³)
- Accretion may change the GMC scale gas-to-dust ratio in the LMC

Gas-to-dust ratio variations via accretion

Depletion fraction at t=5 Myr (~1/2 GMC lifetime)

- For Mg,
$$f_0 = 0.46$$

$$f(t) = \frac{f_0 e^{t/\tau_{gt}}}{1 - f_0 + f_0 e^{t/\tau_{gt}}}$$

Zhukovska+2008

- For $au_{
 m gr}$, assume density scales with surface density as n lpha Σ^3
 - n =1, 50, 1000 cm⁻³ for Σ = 20, 50, 200 M_☉ pc⁻² (Snow+2006)

Impact for star formation studies

Estimating H₂ from dust to study star formation law: beware of GDR variations in GMCs!

$$\Sigma(H_2) = GDR \sum_{dust} - \Sigma(HI)$$

Measured in diffuse ISM (no H_2), but not necessarily applicable in H_2 dominated regions.

May be overestimated by factor ~2 in GMCs due to coagulation

- Variations in dust abundance, size, and composition may affect the physical conditions in GMCs (radiative transfer, chemistry, thermal balance)
 - There may be more dust shielding in GMCs than assumed with constant GDR
 - H₂ formation rate on dust grains may be higher
 - Extinction curves vary in GMCs, in particular ratio of A_V to $\overline{A_{1000~\text{Å}}}$
 - These variations should be included in models