Star formation and ISM on parsec scales

Hony, Gouliermis, Cormier, Dib, Galametz, Galliano, Klessen et al.

N66 in the Small Magellanic Cloud

Catalogue of PMS stars from Hubble ST photometry (PI: Nota)

ISM properties from dust continuum data (PIs: Gordon, Meixner, Hony)

Simple and direct methods

- Auto-correlation function of PMS stars
- Counting PMS stars → SFR
- Dust SED radiative transfer modeling → dust mass
 With some care one can obtain
- Quantitative information on the distribution of young stars
- Relation of stars and ISM on otherwise inaccessible scales
 Methodology to bridge galactic and extragalactic SF
- New physical insights for N66

The Star-Forming Complex N66

NGC 346 (N66) in the SMC HST (PI: A. Nota)

Photometric Catalogs:

> 5000 PMS stars Ages 0-5Myr Very rich central part PMS detected everywhere (Nota et al, Gouliermis et al. 2006)

Credit: NASA/ESA HST & A. Nota (STScI)

Stellar Clustering in N66

Kernel Density Estimator map: Convolution with 5" Gaussian kernel

- Clear central concentration of PMS stars
- Non-spherically symmetry
- Secondary over-densities
- Use autocorrelation function to characterise the distribution

Gouliermis, Hony & Klessen 2014

The Autocorrelation Function (ACF)

Definition from Peebles & Hauser, 1974

Surface density of stars (n) around star i as a function of distance (r)

Normalised to average surface density

Average over all stars

- Slope is a measure of how "clustered" the distribution is
- Power-law exponent(η) of 1+ $\xi(r)$ is related to the fractal index (D_2) for hierarchical distributions ($\eta=D_2$ -2; Mandelbrot 1983)
- Typical values for turbulence driven ISM: D_2 = 1.3-1.5 (Sreenivasan 1991, Elmegreen & Scalo 2004)

Observed ACF

Full ACF has a break around 20"

→ Not a single type of distribution

Without central concentration: power-law behaviour

→ Cluster on top of dispersed distribution

Gouliermis, Hony & Klessen 2014

Synthetic distributions

Populations following probabilities given by

- + Clusters (**Elson, Fall & Freeman 1987**) not tidally truncated [core radius, central density, outer powerlaw]
- + Random fields
- + 3D Fractal distributions (Cartwright & Whitworth 2004) [fractal dim.]
- + And combinations of the above

3D → 2D projection → ACF

(IDL suite available upon request)

A condensed cluster embedded in a fractal stellar distribution

Gouliermis, Hony & Klessen 2014

What about the ISM?

Q: How well do the young stars follow the ISM? Is this bimodal distribution reflected in the ISM?

- SAGE, HERITAGE, Laboca to constrain dust column densities (3.6 870 μm)
- Convolved to 20"x20" independent beams
- SED fits → Dust column density, Temperature, etc (Galliano Model; Galametz et al. 2009)
- Stellar density map using same beam

N66 in ISM tracers

- 115 independent pixels
- ~50 pc radius
- Covering main cluster but also field and northern molecular "spur"
- Masked area is where stars and Laboca are well defined

Conversion factors

Quantitiy	Symbol	Value	Comments/Refs
SMC distance	d_{SMC}	60 kpc	Harries et al. (2003)
Detected young stars ^a	$N_{ m star}$	5150	Gouliermis et al. (2006)
Total young stellar mass ^b	$M_{ m tot}$	$2.2{\cdot}10^4~M_{\odot}$	Sabbi et al. (2008)
Mass per catalog source ^{b,c}	M_{cat}	$4.3~{ m M}_{\odot}$	$= M_{\rm tot}/N_{\rm star}$
SF duration ^b	$\Delta t_{ m SFR}$	5·10 ⁶ yr	Mokiem et al. (2006)
Gas-to-dust mass ratio	$r_{ m gd}$	1740	Gordon et al. (2014)
Derived Quantity			
Stellar surface density	$\Sigma_{oldsymbol{\star}}$		from star catalog
Stellar mass surface density	$\Sigma_{\mathbf{M}_{oldsymbol{\star}}}$	$= \Sigma_{\star} M_{\rm cat}$	
SFR surface density	$\Sigma_{ m SFR}$	$= \Sigma_{\mathrm{M}_{\star}} / \Delta t_{\mathrm{SF}}$	R
Dust column density	$\Sigma_{ m dust}$		from SED fitting
Gas column density	$\Sigma_{ m gas}$	$=\Sigma_{\mathrm{dust}}r_{\mathrm{gd}}$	
Stellar mass fraction	$frac_{ ext{M}\star}$	$=\Sigma_{\mathrm{M}_{\star}}/(\Sigma_{\mathrm{M}})$	$_{\star} + \Sigma_{\rm gas})$

a See Sect. 2.1. b See Sect. 2.5. This mass is *not* the mean mass of the *HST* detected sources but the mass each source represents after correcting for completeness. The mean mass of the young stars in the *HST* catalog is $\sim 2 \, \mathrm{M}_{\odot}$.

SFR compatible with Hα or TIR?

Not locally and not with dust because of little dust (Direct effect of low metallicity and low dgr of SMC)

The Hα nebula is large

Cartoon is quite accurate

Hα MCELS (Smith et al 2000, Points priv comm.) Stars (Sage-SMC Gordon et 2011)

Remission tracers require averaging

Comparing to SK

Zoomed in view

Stellar mass fraction map

Variations (scatter) is **not random**!

Mostly between 0% and 2% (size of points)

High tail to ~10% towards the cluster

High values correlate with 24µm emission (colour of points)

Stellar mass fractions vs X

Correlates best with **direct stellar tracers** (radiation field, stellar density) and much less with **ISM conditions**.

Interpretation: ISM conditions that led to cluster formation have already been erased

Conclusions

ACFs and PMS star counts are powerful tools to study star formation

N66:

Rich cluster (>2000 PMS) **embedded** in fractal distribution N66 averaged SFE over 90 pc is high compared to SK by a factor of 2 Stars and ISM correlate **even on small scales** (6pcx6pc) with scatter Variations are **not random** but highest values (by factor of 3-5) are **all** cluster environment

Suggestive: High SFE in clustered environment

Advantages and pitfalls

ACF (or Δ -variance):

- Compared to nth-nearest neighbor or Q-parameter: can detect change of behavior at specific spatial scale
- Requires careful treatment of edge effect and absolute number of sources

Star counts:

- Does not require assumed mass function or ages
- Access to smaller spatial scales (~pc) than traditional tracers

Dust method:

- Large/Complete coverage
- Not sensitive to gas state or X_{co}
- Assumes gas and dust are well mixed and constant gas-to-dust mass ratio (appears valid in this case)

Dust emission and Ha are tightly correlated

Variety of environments

#1: many stars, little CO, highest SFE

#2: intermediate SFE

#3: lots of dust, little CO, low

SFE

#4: lots of dust, strong CO,

low SFE

#4 could become like #1 if strong new SFE will occur

#2 and #3 will probably not

Importance of 3D simulations

Figure B1. Calibration relation between the three-dimensional fractal dimension D_3 , the ACF index η , and the corresponding two-dimensional fractal dimension D_2 , derived from our simulated self-similar stellar distributions.

Importance of 3D simulations

